首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116248篇
  免费   12040篇
  国内免费   14008篇
化学   71903篇
晶体学   2540篇
力学   5828篇
综合类   1249篇
数学   19570篇
物理学   41206篇
  2024年   162篇
  2023年   1172篇
  2022年   1744篇
  2021年   3063篇
  2020年   3377篇
  2019年   3267篇
  2018年   2844篇
  2017年   3419篇
  2016年   4555篇
  2015年   4386篇
  2014年   5857篇
  2013年   9390篇
  2012年   7480篇
  2011年   7563篇
  2010年   6264篇
  2009年   7696篇
  2008年   7858篇
  2007年   8254篇
  2006年   6995篇
  2005年   5733篇
  2004年   5202篇
  2003年   4618篇
  2002年   3898篇
  2001年   3055篇
  2000年   2734篇
  1999年   2313篇
  1998年   2090篇
  1997年   1704篇
  1996年   1641篇
  1995年   1498篇
  1994年   1403篇
  1993年   1195篇
  1992年   1197篇
  1991年   817篇
  1990年   691篇
  1989年   558篇
  1988年   574篇
  1987年   474篇
  1986年   421篇
  1985年   564篇
  1984年   438篇
  1983年   236篇
  1982年   442篇
  1981年   595篇
  1980年   529篇
  1979年   567篇
  1978年   460篇
  1977年   366篇
  1976年   311篇
  1973年   216篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
62.
Structure determination of functional organic compounds remains a formidable challenge when the sample exists as a powder. Nuclear magnetic resonance crystallography approaches based on the comparison of experimental and Density Functional Theory (DFT)-computed 1H chemical shifts have already demonstrated great potential for structure determination of organic powders, but limitations still persist. In this study, we discuss the possibility of using 13C-13C dipolar couplings quantified on powdered theophylline at natural isotopic abundance with the help of dynamic nuclear polarization, to realize a DFT-free, rapid screening of a pool of structures predicted by ab initio random structure search. We show that although 13C-13C dipolar couplings can identify structures possessing long range structural motifs and unit cell parameters close to those of the true structure, it must be complemented with other data to recover information about the presence and the chemical nature of the supramolecular interactions.  相似文献   
63.
A new Schiff base hydrazone (Z)‐2‐(2‐aminothiazol‐4‐yl)‐N′‐(2‐hydroxy‐3‐methoxybenzylidene) acetohydrazide (H2L) and its chelates [VO (HL)2]·5H2O, [Cu (HL)Cl(H2O)]·2H2O and [Fe(L)Cl(H2O)2]·3H2O have been isolated and characterized using different physico‐chemical methods, for example infrared (IR), electron paramagnetic resonance (EPR), thermogravimetric analysis and DTG in the solid state, and 1H‐NMR, 13C‐NMR and UV in solution. Magnetic and UV–visible measurements proposed that the coordination environments are square pyramidal, tetrahedral and octahedral geometries for oxovanadium (IV), Cu (II) and Fe (III), respectively. The ligand acts as mono‐negative NO towards oxovanadium (IV) and Cu (II) ions, and bi‐negative ONO for Fe (III) ion. The geometries of the ligand and its complexes were performed using Gaussian 9 program with density functional theory. The EPR spectral data of oxovanadium (IV) and Cu (II) chelates confirmed the mentioned geometries. The molecular modeling was done, and illustrated bond lengths, bond angles, molecular electrostatic potential, Mulliken atomic charges and chemical reactivity for the inspected compounds. Theoretical IR and 1H‐NMR of the free ligand were calculated. Furthermore, thermodynamic and kinetic parameters for thermal decomposition steps were studied. Docking study of H2L was applied against the proteins of both bacterial strains Staphylococcus aureus and Escherichia coli, as well as the protein of xanthine oxidase as antioxidant agent by Schrödinger suite program utilizing XP glide protocol. Furthermore, antimicrobial, antioxidant and DNA‐binding activities of the compounds have been carried out.  相似文献   
64.
《Discrete Mathematics》2019,342(12):111597
We find explicit formulas for the radii and locations of the circles in all the optimally dense packings of two, three or four equal circles on any flat torus, defined to be the quotient of the Euclidean plane by the lattice generated by two independent vectors. We prove the optimality of the arrangements using techniques from rigidity theory and topological graph theory.  相似文献   
65.
66.
Arylsilicones are widely exploited for their thermal and optical properties. The creation of phenylsilicone elastomers with specific physical properties is typically done by a “one-off” formulation and test process. Herein, it is demonstrated that high-throughput synthesis methods can be used to rapidly prepare a series of arylsilicone elastomers and then the relative impact of different aryl groups on their physical properties is assessed. Aromatic groups were incorporated into polydimethylsiloxane (PDMS) elastomers by exploiting the relative reactivity of different functional groups in the Piers–Rubinsztajn reaction. To analyze trends in the silicone mechanical properties as a function of increasing aryl concentration—structure/property relationships—libraries of elastomers were both quickly synthesized and characterized by using high-throughput suites starting from low viscosity silicone oils/monomers in 96-well plates. Liquid handling parameters were optimized to effectively work with the silicones. Incorporating aryl instead of alkyl crosslinkers into the PDMS backbone increased the silicone elastomer modulus by approximately 50 % (at a crosslink density of 6 %); elastomers prepared with an aromatic crosslinker with three contact points led to much higher moduli compared with those with one contact point at the same crosslink density. When located at precise rather than random points on the silicone chains, diphenylsilicones had lower moduli than analogous monophenylsilicones.  相似文献   
67.
The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Eringen's nonlocal elasticity theory, a nonclassical model is developed. Using the Galerkin method(GM), the governing equation which is a nonlinear partial differential equation(NLPDE) of the fourth order is converted to a nonlinear ordinary differential equation(NLODE) in the time domain. Then, the reduced NLODE is solved analytically by means of the homotopy analysis method. At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.  相似文献   
68.
A new crystalline form of αβ‐d ‐lactose prepared by oven drying a concentrated aqueous solution of d ‐lactose is a lesson in the power of observation and the rigorous analysis of powder samples.  相似文献   
69.
70.
Graphene oxide is a two-dimensional carbon nanomaterial that has risen to prominence over the last decade as graphenes water-dispersible counterpart. This key feature offers tremendous potential in the formation of waterborne hybrid materials, coatings, membranes and adsorbents that make use of its diverse surface chemistry and extraordinary surface area. However, the fundamental colloidal properties of graphene oxide remain incompletely understood, with conflicting reports on how the material's amphiphilic nature and adsorption at interfaces render it surfactant-like or particle-like in nature. In the present work, recent developments in understanding the bulk and interfacial colloidal properties of graphene oxide are explored in the context of its chemistry and system thermodynamics, giving insight into the fundamental question of whether its aqueous behaviour is most accurately described as particle-like, surfactant-like or indeed something entirely different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号